
ACCELERATION OF HEALING ASSURANCE
OF CONCURRENT JAVA PROGRAMS

Pavel Vyvial
Master Degree Programme (1), FIT BUT

E-mail: xvyvia00@stud.fit.vutbr.cz

Supervised by: Bohuslav Křena
E-mail: krena@fit.vutbr.cz

ABSTRACT
The project SHADOWS has started research which is developing software for automatic
healing of concurrent bugs. After every healing action, one would like to know whether
this action has fixed the detected problem and that it has not caused any other, possibly
even more serious, problem. This paper describes a technique which accelerates healing
assurance. Because stable library could be use in lots of healing assurance analysis,
acceleration of healing assurance of concurrent Java programs by library preprocessing
based on script was created.

1. INTRODUCTION
Concurrent programming brings with a several advantages (like efficient usage of high
performance computers) possibility of new types of bugs. It is very difficult to find all
concurrent bugs in programs due to the nature of concurrent programs – there is a huge
number of possible interleaving.

SHADOWS approach, a self-healing approach consists of the following steps:

 problem detection – it is necessary to detect that something is wrong

 problem localisation – finding the root cause of detected problem

 problem healing – fix the found problem

 healing assurance – give result if healing action was successful or not

Data races can lead to an unpredictable behaviour of program, therefore are usually
considered as bug. For data races detection, static and dynamic analysis is used. Currently,
we deal with data races that can be automatically healed by adding new locks or by
rescheduling. Within healing assurance, we concentrate on deadlock detection [1,2].

Currently, self-healing action can introduce a new lock which ensures the atomicity of po-
tentially dangerous unsynchronized code. Unfortunately, such a lock can cause a deadlock.
This paper describe acceleration for healing assurance after healing action based on adding
new locks.

For healing assurance, we use two approaches. First technique is the strategy of recording
the trace of program execution and on replaying it in the model checker − JavaPath Find-
er [3]. Some healing assurance purpose (as finding lock instruction in particular code
block) do not need so robust technique and this is reason why we use second quicker
technique − healing assurance by static analysis. Healing assurance based on static analysis
(HABOSA) is less accurate then healing assurance based on model checking but if
HABOSA tells that some healing action is safe it is true.

HABOSA is detector which is able to find locks (in order to avoid deadlocks) in code. For
this purpose being used FindBugs [4]. FindBugs works at byte-code level and abstraction
of it created by Byte Code Engineering Library (BCEL) [5].

Healing assurance is done by static analysis. Important is the sequence of locking and if a
healing lock create loop in relation graph. Finding locks is provided by FindBugs under
BCEL abstraction, Java byte-code which is instrumented by ConTest [6] and output of Py-
thon script (safeMethods file and dangerMethods file).

Acceleration is created for HABOSA which finds every lock in the system and then checks
whether the lock added by a healing action does not interact with other locks.

2. LIBRARY PREPROCESSING FOR HEALING ASSURANCE PROGRAM
Because the first version of Healing Assurance Program (HAP) [7] can not find some ana-
lysed methods HAP marks a lot of methods as potential danger. Some of these methods
which first HAP prototype marked as potential danger are safe. Often these methods in-
clude Java libraries or other libraries which are user available. We have two choices how to
make less false alarm (mark potential danger methods). We take big libraries and instru-
ment it by ConTest and start analyse. Advantage of this method is that user does not need
more tools. Disadvantage of this technique is that analyse have to make huge Call Graph
under all instrumented methods which user puts at HAP input. This technique is really
slow for big libraries like Java library at HAP input. This is reason why was created second
technique based on script (SK), which helps use smaller Call Graph then first technique.

If a user uses a library often, it is better to process the library (by executing SK) only once
and so accelerate all the following usages of the library. SK is able to classify methods of
the given library into two groups. First group include method's signature of methods which
can be in location heal by adding lock (stored in the safeMethods file). Second group in-
clude method's signature of methods which can not be in location heal by adding lock
(stored in dangerMethods file). This classification helps HAP accelerate healing assurance.

In practice, SK takes the classes which are in current directory or subdirectories and create
text files by force of Javap. Then SK start with classes analyse. One start looks safe and
danger methods. Danger methods are every method which have at least one of this
patterns: (1) Synchronized or native flag are at method declaration. (2) Method's class has
ancestor's class which has danger method with same signature. (3) Method's body include
monitorenter instruction. (4) Method's body include invoke instruction which destination is
some danger or unknown method. All the others methods are safe. When script analyse
every method from classes which are at current directory or subdirectories SK create out-
put files. This analysis could run long time for huge library but it is better spend this time
once and after that analyse by HAP have faster. Table 1 shows some test statistics. Test
machine has configuration: 8 core based on CPU Intel X5355 2.66GHz and 16GB RAM.

name classes methods safe methods danger methods time

java lib-
rary

17 307 133 981 61 746 72 235 69 hours

java.* 2 449 20 990 9 739 11 251 1 hour

Table 1: SK runs for all java libraries and java.*

3. CONCLUSIONS
In this paper, we have presented technique which accelerates healing assurance in Java
programs by static analysis. The main part acceleration is build on script which is tackling
problem with inaccessible methods from user's available libraries. Currently, script creates
safeMethods file and dangerMethods file that accelerate HAP by reducing Call Graph.
Healing assurance program uses script output and finds locks and creates the Call graph
over all methods of analysed program. HAP analyses a location where healing action has
planned new lock and decides about safety of healing action.

ACKNOWLEDGEMENT
This work is supported by the European Community under the Information Society Tech-
nologies (IST) programme of the 6th FP for RTD - project SHADOWS contract IST-
035157. The authors are solely responsible for the content of this paper. It does not
represent the opinion of the European Community, and the European Community is not
responsible for any use that might be made of data appearing therein.

REFERENCES
[1] B. Křena, Z. Letko, R. Tzoref, S. Ur, and T. Vojnar. Healing data races on-the-fly.

In Proceedings of the PADTAD '07. ACM, 2007.

[2] B. Křena, Z. Letko, and T.Vojnar. AtomRace: Data Race and Atomicity Violation
Detector and Healer. In Proceedings of the PADTAD'08. ACM, 2008.

[3] B. Křena, V. Hrubá, and T. Vojnar. Self–healing Assurance Based on Bounded Mod-
el Checking. In Proceedings of the 12th International Workshop on computer Aided
Systems Theory. Las Palamas de Gran Canaria, Spain, February 2009.

[4] FindBugs – a program which uses static analysis to look for bugs in Java code [on-
line]. Last update 2008-02-22. Available URL: <http://findbugs.sourceforge.net/>

[5] BCEL – Byte Code Engineering Library [online]. Last update 2006-01-03. Available
URL: <http://jakarta.apache.org/bcel/>

[6] Orit Edelstein, Eitan Farchi, Yarden Nir, Gil Ratsaby, and Shmuel Ur. Multi-
threaded Java program test generation. IBM Systems Journal, 41(1):111–125, 2002.

[7] P. Vyvial. Healing assurance in java programs. In Proceedings of the 14th conference
Student EEICT 2008, volume 1. Vysoké učení technické v Brně, 2008.

http://jakarta.apache.org/bcel/

	1. INTRODUCTION
	2. LIBRARY PREPROCESSING FOR HEALING ASSURANCE PROGRAM
	3. CONCLUSIONS

